
m

Loading Large Datasets into the ODS/API -

Reviewing Alternatives to the Data Import Tool

Prepared in collaboration with the Ed-Fi Alliance

November 1, 2022

TABLE OF CONTENTS

Table of Contents 1

Overview 2

Scope 2

ETL Tool Survey 2
Survey Data 3
Survey Criteria 5
Survey Results 6

Deep Dive POC 7
Data Source 7
Data Mapping 7
Talend Open Studio (v8.0) 7
Nifi (v1.16.3) 12
Azure Data Factory 17
AWS Glue Studio 26

Conclusion 28

Growth towards impact 1
www.crocusllc.com

OVERVIEW

Ed-Fi implementations often require loading large amounts of data on a daily basis through the Ed-Fi
API. Sometimes,when working with large datasets, data loads implemented using Ed-Fi’s Data Import
Tool (DIT) take longer than the refresh period to complete, rendering the use of the tool unfeasible. As
an example, one implementer needed to ingest millions of records every 24 hours which is not a load
meant to be handled by the DIT (which at most can handle 10’s of thousands of records per day). An
alternative to the DIT is needed in such cases..

SCOPE

This document reviews a number of ETL (Extract, Transform and Load) tools compatible with the Ed-Fi
API. It includes both a survey of popular ETL tools in the market as well as a deep dive into several tools
that are considered good alternatives to DIT..

ETL TOOL SURVEY

An existing list of ETL tools was used as a starting place for the survey. A review of each was performed
to get an initial idea of how good a replacement they would be to the DIT. The main areas of interest
were:

● Completeness: A check to confirm whether the tool can perform all ETL operations .

● Ease of use: A subjective assessment of how easy it is to learn and work with the tool.

● Any pros and cons noted during the review.

Growth towards impact 2
www.crocusllc.com

Survey Data

Tool Complete
ETL

Ease of Use/
Installation

Pros Cons

Talend
Extract
Transform
Load

Easy/Easy ● Multi-platform
● Tool not required to run

jobs (standalone Java
apps)

● Job Orchestration within
tool

● Open-Source
● Generates code (Java,

read-only)
● UI

● Concurrency only on
paid version

Singer Extract
Transform
Load

Difficult/Difficult ● Open-Source
● Requires developing a

custom Tap (source) for
fs CSV (S3 CSV available)

● Requires developing a
custom Target for
Ed-Fi API

Airbyte Extract
Transform
Load

Medium/Easy ● Open-Source version
available

● Docker image

● No connector available
for EdFi API or generic
REST

● Connectors in Alpha
state

● Limited
transformations

Camel Extract
Transform
Load

Difficult/Difficult ● Open-Source ● Library only

Growth towards impact 3
www.crocusllc.com

Nifi Extract
Transform
Load

Medium/Easy ● Open-Source
● Web UI
● InvokeHTTP controller

for EdFi API interaction
available Out-Of-Box

● Concurrency Out-Of-Box

● Complex

Hevo Extract
Transform
Load

Medium/Easy ● MSSQL & Postgres
connector available

● Python transformations
● UI for transformations

(beta)

● Cloud only
● No REST as destination

Stitch Extract
Transform
Load

Medium/Easy ● UI for transformations ● Cloud only
● No REST as destination

Matillion Extract
Transform
Load

Medium/Easy ● UI for transformations ● Cloud only
● No REST as destination

Informati
ca

Extract
Transform
Load

Medium/Easy ● Cloud and on-prem
agents

● UI for transformations
● REST as destination

● Connectors are paid
individually

Fivetran Extract
Transform
Load

Medium/Easy ● UI for transformations ● Cloud only
● No REST as destination

AWS
Glue

Extract
Transform
Load

Difficult/Easy ● UI for transformations
● UI generates Python

code
● Databricks based

● Target and
destinations limited to
AWS

● No REST as destination
(from UI)

Growth towards impact 4
www.crocusllc.com

Azure
Data
Factory

Extract
Transform
Load

Medium/Easy ● UI for transformations
● UI generates JSON

configs
● Databricks based

● REST as destination

Databric
ks

Extract
Transform
Load

Difficult/Medium ● Available thru AWS, GCP,
Azure, etc.

● Can use SQL

● No UI for
transformation

Data
Import
Tool

Extract
Transform
Load

Easy/Medium ● Simple ● No transformations
● Limited sources (CSV)
● Poor performance

(single threaded)

Survey Criteria
In order to reduce the number of tools to evaluate the following criteria was used:

● Ease of Use: since the DIT provides a UI and it’s relatively easy to use for new users, the tool has
to provide a UI.

● Ease of Installation: the tool has to be easy to set-up (on-prem or cloud).

● Cost: open source and pay-per-use were preferred over subscription based tools.

● Completeness: the DIT only provides the loading portion of an ETL application. Extraction,
transformations and automations have to be done via scripting outside of it. Tools which
provide more features were preferred.

● Performance: given the poor performance of the DIT with large data sets, tools were evaluated
on how fast they could load records thru the Ed-Fi API. Tools which provide concurrency out of
the box were preferred.

● Popularity: tools which have already been used in previous implementations or that are
mentioned in reports such as the 2022 Gartner® Magic Quadrant™ for Data Integration Tools
report (figure 1) were prioritized.

Growth towards impact 5
www.crocusllc.com

Survey Results
Based on the criteria identified, two on-prem tools and one cloud tool were selected to conduct a proof
of concept to confirm whether they are a valid replacement for the DIT.

These are:

● On-Prem:

○ Talend Open Studio: Mentioned as a Leader by Gartner, open source version available
with UI and REST component.

○ Nifi: Mentioned as a Leader by Gartner, open source version available with UI and REST
component.

● Cloud:

Growth towards impact 6
www.crocusllc.com

○ Azure Data Factory: Mentioned as a Niche Player by Gartner, available with UI and REST
component.

DEEP DIVE POC

The proof of concept consisted in loading a medium sized data source (around 100.000 records) thru
the Ed-Fi API into an Ed-Fi ODS.

Data Source
As data source, the NCES CCD 2020-2021 school directory available at
https://nces.ed.gov/ccd/files.asp#Fiscal:2,SchoolYearId:35,Page:1 was used. This file consists of 101.662
school records covering the universe of all public elementary and secondary schools in the United
States.

Data Mapping
The schools API endpoint was mapped as follows:

Endpoint field Data Source column / value

schoolId SCHID

nameOfInstitution SCH_NAME

gradeLevels [{'gradeLevelDescriptor':'uri://ed-fi.org/GradeLevelDes
criptor#Early Education'}]

educationOrganizationCategories
[{'educationOrganizationCategoryDescriptor':'uri://ed
-fi.org/EducationOrganizationCategoryDescriptor#Sc
hool'}]

Talend Open Studio (v8.0)

This tool can be downloaded from https://www.talend.com/lp/open-studio-for-data-integration/. This
being a Java tool it requires a Java environment. The required Java version is 11.

Growth towards impact 7
www.crocusllc.com

https://nces.ed.gov/ccd/files.asp#Fiscal:2,SchoolYearId:35,Page:1
https://www.talend.com/lp/open-studio-for-data-integration/

The following job was created:

In the Metadata -> File delimited option a new metadata named NCES was configured for the data
source file:

In the contexts for this job a new variable was created as displayed:

The components used in the job are described below (only parameters changed from their default
values are described):

Growth towards impact 8
www.crocusllc.com

● tREST_1: this tREST is used to retrieve a bearer token from the Ed-Fi API that will be used to
authorize the subsequent calls to the schools endpoint. The following parameters where
configured:

○ URL: Oauth endpoint for the Ed-Fi API (e.g:"https://edfi-test/WebApi/oauth/token").

○ HTTP Method: POST

○ HTTP Headers: a new header was added with the following values:

name value

“Content-Type” “application/json”

○ HTTP Body:

"{
'client_id': '<vendor id>',
'client_secret': '<vendor secret>',
'grant_type': 'client_credentials'

}"

● tExtractJSONFields_1: this tExtractJSONFields component is used to extract the token from the
JSON return by the authentication endpoint. Its parameters were configured as follows:

○ Read By: JsonPath

○ JSON field: Body

○ Loop Jsonpath query: “$”

○ Mapping:

Column Json query

access_token “access_token”

● tJavaRow_1: a tJavaRow component used to store the access token into a context variable with
the following parameters:

Growth towards impact 9
www.crocusllc.com

https://edfi-test/WebApi/oauth/token

○ Code: note only the first line is required. The other lines just print out the access token
value when running the job.

context.token=input_row.access_token;
java.io.PrintStream consoleOut_jr = new java.io.PrintStream(System.out);
consoleOut_jr.println(context.token);
consoleOut_jr.flush();

● NCES: this tFileInputDelimited component reads the data source file. It was created by drag &
drop the previously configured NCES metadata file.

● tWriteJSONField_1: a tWriteJSONField configured with the following parameter:

○ Remove root node: <checked>

○ Map (double click on component):

● tRESTClient_1: a tRestClient used to POST each JSON payload to the schools API endpoint
configured as follows:

○ URL: Ed-Fi API schools endpoint (e.g: "https://edfi-test/WebApi/data/v3/ed-fi/schools")

○ HTTP Method: POST

○ Content Type: JSON

○ Accept Type: Any

○ Use Authentication: <checked>

○ Authentication Type: OAuth2 Bearer

○ Bearer Token: context.token

● Two tLogRow components with default parameters used to log API responses.

This job took longer than the DIT to load the entire file on the samemachine since on the free version of
the tool parallelization is not enabled. As per the tool documentation: “Note that this type of

Growth towards impact 10
www.crocusllc.com

https://edfi-test/WebApi/data/v3/ed-fi/schools
https://help.talend.com/r/en-US/8.0/studio-user-guide-data-services-platform/writing-data-in-parallel

parallelization is available only on the condition that you have subscribed to one of the Platform
solutions or Big Data solutions.”

The tool allows building a “standalone job” (java application) that can be run without Talend Studio.

In order to send POSTs to the Ed-Fi API, the server certificate must be added to the JVM cacerts store
by:

1. Export the certificate: On windows -> "Manage computer certificates" -> locate certificate ->
Export (.CER file)

2. Use the keytool in the JDK to import it:

.\keytool.exe -importcert -trustcacerts -cacerts -file edfiods.cer -alias
EdFiOds

The default password for the JVM certificate store is "changeit".

Growth towards impact 11
www.crocusllc.com

Nifi (v1.16.3)
There’s no installer for this tool. It's a web application running on apache. To use it:

1. Download it from https://nifi.apache.org/download.html.

2. Extract the downloaded folder.

3. Run the /bin/run-nifi.bat file from the folder where you extracted Nifi.

4. On your browser open https://localhost:8443/nifi.

5. Locate the autogenerated credentials in the /logs/nifi-app.log file by searching for “Generated
Username”.

6. Use the found credentials in the Nifi Log in screen.

The following flow was created:

Growth towards impact 12
www.crocusllc.com

https://nifi.apache.org/download.html
https://localhost:8443/nifi

These processors were used:

● LogMessage (upper left corner): Logs the current time. It serves to log at which time the process
starts immediately after reading the data source by configuring these parameters:

○ Log message: start=${now()}

● GetFile: creates a FlowFile from the data source csv. It continually polls the input directory while
the processor is running. It was configured as follows:

○ Input Directory: path to the data source file.

Growth towards impact 13
www.crocusllc.com

○ File Filter: .*\ .csv

● Update Attribute: Updates the Attributes for a FlowFile by using the Attribute Expression
Language and/or deletes the attributes based on a regular expression. It's used to add a new
column to the file read by adding a new property to it as follows:

Property Value

schema.name schools

● ConvertRecord: Converts records from one data format to another using configured Record
Reader and Record Write Controller Services, in this case it’s used to transform the CSV rows
into JSON. Its properties were configured as follows:

○ Record Reader: CSVReader
○ Record Writer: JsonRecordSetWriter

● UpdateAttribute (lower left corner):this processor is used to add another attribute to the
FlowFile. It’s configured by adding a new property as follows:

Property Value

filename $(filename).json

● SplitJson: Splits a JSON File into multiple, separate FlowFiles for an array element specified by a
JsonPath expression. In this flow creates a JSON object for each CSV row by configuring the
following properties:

○ JsonPath Expression: $.*

● JoltTransformJSON: Applies a list of Jolt specifications to the flowfile JSON payload. It is used to
map the CSV columns into specific JSON fields and to hardcode other JSON fields. This was
achieved by setting the next properties:

○ Jolt Transformation DSL: Shift
○ Jolt Specification:

{ "SCHID": "schoolId",
"SCH_NAME": "nameOfInstitution",
"": "educationOrganizationCategories[]",
"#uri://ed-fi.org/EducationOrganizationCategoryDescriptor#School":

Growth towards impact 14
www.crocusllc.com

"educationOrganizationCategories[].educationOrganizationCategoryDescriptor",
"": "gradeLevels[]",
"#uri://ed-fi.org/GradeLevelDescriptor#Early Education":

"gradeLevels[].gradeLevelDescriptor" }

Additionally these scheduling parameters were configured:

● Concurrent Tasks: 20

● InvokeHTTP: An HTTP client processor which can interact with a configurable HTTP Endpoint. It
is used to send the JSON payloads to the API endpoint. Its properties were configured as
follows:

○ HTTP Method: POST
○ Remote URL: Ed-Fi API schools endpoint (e.g:

"https://edfi-test/WebApi/data/v3/ed-fi/schools")
○ OAuth2 Access Token provider: StandardOauth2AccessTokenProvider
○ Content-Type: application/json

Additionally these scheduling parameters were configured:

● Concurrent Tasks: 20

● LogMessage (bottom right corner): another processor used to log the end time for the process
by configuring its parameters as following:

○ Log message: end=${now()}

The following controller services were configured:

● CSVReader: Parses CSV-formatted data, returning each row in the CSV file as a separate record.
It’s used by the ConvertRecord processor.

● AvroSchemaRegistry: a service for registering and accessing schemas. It is used by the
JsonRecordSetWriter controller service. A new property was added to it with the following:

Property Value

schools {"type":"record",

"name":"schoolRecord",

"fields":[

{"name": "SCHID", "type":"long"},

{"name": "SCH_NAME", "type":"string"}

]}

Growth towards impact 15
www.crocusllc.com

https://edfi-test/WebApi/data/v3/ed-fi/schools

● JsonRecordSetWriter: Writes the results of a RecordSet as either a JSON Array or one JSON
object per line. It’s used by the ConvertRecord processor with the following properties:

○ SchemaWrite Strategy: Set 'schema.name' Attribute
○ Schema Access Strategy: Use 'Schema Name' Property
○ Schema Registry: AvroSchemaRegistry
○ Schema Name: ${schema.name}

● StandardOauth2AccessTokenProvider: Provides OAuth 2.0 access tokens that can be used as
Bearer authorization header in HTTP requests. Used by the InvokeHTTP controller with the
following properties:

○ Authorization Server URL: Oauth endpoint for the Ed-Fi API
(e.g:"https://edfi-test/WebApi/oauth/token").

○ Grant Type: Client Credentials
○ Client ID: <vendor Id>
○ Client secret: <vendor secret>

Finally, on the “Controller Settings” menu, under the “General” tab the “Maximum Timer Driven Thread
Count” was set to “20”.

It took this tool 6 to 10 times less to load all source records than the DIT or Talend due to its out-of-box
parallelization. Notably, it's possible to build a NiFi cluster where all nodes run the same data flow
increasing parallelization and reducing load times, provided the Ed-Fi API service can serve the load.

Growth towards impact 16
www.crocusllc.com

https://edfi-test/WebApi/oauth/token

Azure Data Factory
Since this is a cloud tool there’s no installation required. It is set-up by creating a “Data Factory” resource
from the Azure portal:

For the POC an Ed-Fi ODS/API was already set-up on Azure with the scripts provided in the Ed-Fi
Exchange. Additionally, the data source file was placed in an Azure VM folder.

Three different methods were tested:

● Loading each JSON payload individually using a ForEach activity.

● Loading all JSON payloads using a Copy activity.

● Loading all JSON payloads directly from a DataFlow.

For the first method this is the pipeline created:

Growth towards impact 17
www.crocusllc.com

This pipeline uses these activities:

● Web_GetBearerToken: a Web action used to call a custom REST endpoint from an Azure Data
Factory or Synapse pipeline. In this pipeline it retrieves the OAuth bearer token from the Ed-Fi
API by configuring its settings as follows:

○ URL: Oauth endpoint for the Ed-Fi API (e.g:"https://edfi-test/WebApi/oauth/token")
○ Method: POST
○ Body:

{"client_id":"<vendor id>","client_secret":"<vendor
secret>","grant_type":"client_credentials"}

○ Headers: a new header was added with the following values:

name value

Content-Type application/json

● SetVar_access_token: this Set variable action assigns the access token retrieved by the
Web_GetBearerToken action to the access_token pipeline variable with the following variables:

○ Name: access_token
○ Value: @{concat('Bearer ', activity('Web_GetBearerToken').output.access_token)}

This was necessary since the REST sink provided sends “bearer” plus access token which is
rejected by the Ed-Fi API due to the lower “b”.

Growth towards impact 18
www.crocusllc.com

https://edfi-test/WebApi/oauth/token

● Copy data TPDMSchoolSource to blob: this Copy activity copies only some columns from the
data source file to an Azure Storage account container and adds two hard coded columns by
settings its configuration as follows:

○ Source:

■ Source Dataset: TPDMSchoolSource
■ Additional columns:

Name Value

gradeLevelDescriptor uri://ed-fi.org/GradeLevelDescriptor#Early Education

educationOrganizationCategoryDescriptor uri://ed-fi.org/EducationOrganizationCategoryDescriptor#School

○ Sink:
■ Sink dataset: CSVBlobStorage

○ Mapping: these new entries were added:

Source Type Destination

SCHID String schoolId

SCH_NAME String nameOfInstitution

gradeLevelDescriptor String gradeLevelDescriptor

educationOrganizationCategoryDescriptor String educationOrganizationCategoryDescriptor

● dataflow_GeneratePayload: this dataflow action transforms the CSV data into JSON format with
the following settings:

○ Data flow: dataflow_GeneratePayload
○ Compute size: small

● Lookup jsonFile for variable: retrieves the contents of the JsonBlobStorage dataset.

● set Variable jsonstring: sets the value of the jsonString array variable with the contents of the
JsonBlobStorage dataset.

● ForEach payload: this activity loops through all the items in the jsonString variable and invokes
the Web_PostPayload action for each. The following settings were configured:

○ Items: @variables('jsonsSring')

Growth towards impact 19
www.crocusllc.com

● Web_PostPayload: another web activity used to post each school payload to the Ed-Fi API
schools endpoint. Its settings were configured as follows:

○ URL: Ed-Fi API schools endpoint (e.g: "https://edfi-test/WebApi/data/v3/ed-fi/schools")
○ Method: POST
○ Body: @item()
○ Headers:

name value

Content-Type application/json

accept application/json

Authorization @variables('access_token')

For this pipeline the following variables were created:

Name Type

access_token String

jsonsString Array

Along with two datasets:

● TPDMSchoolSource: a DelimitedText dataset connected thru a Linked Service to the VM hosting
the data source file.

● CSVBlobStorage: another DelimitedText dataset connected to an Azure Storage Account
container used to stage some of the data source along with hard-coded data.

● JsonBlobStorage: a JSON dataset used to stage the CSVBlobStorage data converted into JSON
format.

And finally a dataflow to transform CSV into JSON:

Growth towards impact 20
www.crocusllc.com

https://edfi-test/WebApi/data/v3/ed-fi/schools

This dataflow has these steps:

1. Source1: Imports the data from the CSVBlobStorage dataset by configuring these
source settings:

a. Source Type: Dataset
b. Dataset: CSVBlobStorage

2. derivedColumn1: creates the gradeLevels and educationOrganizationCategories
endpoint fields by adding the following columns to its Derived column’s settings:

a. Columns:

Column Expression

gradeLevels @(gradeLevelDescriptor=gradeLevelDescriptor)

educationOrganizationCategories @(educationOrganizationCategoryDescriptor=educ
ationOrganizationCategoryDescriptor)

3. Aggregate1: aggregates data by schoolId and nameOfInstitution by adding the
following columns to:

a. GroupBy:

Columns Name As

schoolId schoolId

nameOfInstitution nameOfInstitution

b. Aggregates:

Column Expression

educationOrganization
Categories

collect(educationOrga
nizationCategories)

Growth towards impact 21
www.crocusllc.com

gradeLevels collect(gradeLevels)

4. sink2: writes the transformed JSON to the JSONStorageBlob dataset.

Unfortunately, this pipeline performance was not good due to the sequential nature of the ForEach
activity, leading to an expired token before all the data was loaded.

A second method was tried where the ForEach activity was replaced with a Copy one:

The Copy JSON to API POST Copy data activity was configured as follows:

● Source:
○ Source dataset: JSONBlobStorage

● Sink:

○ Sink Dataset: RestResource
○ Request Method: POST
○ Additional Headers:

name value

accept application/json

Authorization @variables('access_token')

Growth towards impact 22
www.crocusllc.com

The RestResource REST dataset used by the Copy JSON to API POST activity was configured as
follows:

● Connection:
○ Linked Service: RestService

And the RestService used in its sink dataset with the following values:

● Base URL: Ed-Fi API schools
endpoint(e.g:"https://edfi-test/WebApi/data/v3/ed-fi/schools")

● Authentication Type: Anonymous

This approach didn’t work since the Copy data activity sends an array of school JSON objects to the
Ed-Fi API, which replies wit the following error:

{\r\n \"message\": \"Cannot deserialize the current JSON array (e.g. [1,2,3]) into type
'EdFi.Ods.Api.Common.Models.Requests.Schools.EdFi.SchoolPost' because the type requires a JSON object
(e.g. \{\\\"name\\\":\\\"value\\\"}
) to deserialize correctly.\\r
nTo fix this error either change the JSON to a JSON object (e.g. {\\\"name\\\":\\\"value\\\"}) or change the
deserialized type to an array or a type that implements a collection interface (e.g. ICollection, IList) like List<T>
that can be deserialized from a JSON array. JsonArrayAttribute can also be added to the type to force it to
deserialize from a JSON array.\\r
nPath '', line 1, position 1*

Finally, the third option was implemented with the following pipeline:

Growth towards impact 23
www.crocusllc.com

https://edfi-test/WebApi/data/v3/ed-fi/schools

Where the Web_GeatBearerToken, SetVar_access_token and Copy data TPDMSchoolSource to blob
actions were copied from the first pipeline and have already been detailed above. The Data flow1 Data
flow action settings where configured as follows:

● Data flow: dataflow1

And a new parameter was added to it with these values:

name value

token @variables('access_token')

The dataflow1 referenced in the pipeline has the same steps as the dataflow_GeneratePayload
described before:

However, the sink used (sink1) is configured to directly post to the Ed-Fi API by settings its following Sink
setting:

● Dataset: RestResource (described previously)

Also, its settings where configured as follows:

● Insert Method: POST

● Format: JSON

● Additional headers:

name value

accept application/json

Authorization $token

And its mapping:

Input Columns Output Columns

Growth towards impact 24
www.crocusllc.com

schoolId schoolId

nameOfInstitution nameOfInstitution

gradeLevels gradeLevels

educationOrganizationCategories educationOrganizationCategories

This pipeline was able to load all the data under an hour with the possibility to decrease that time by
using a bigger compute size in the Data flow1 activity’s setting.

Growth towards impact 25
www.crocusllc.com

AWS Glue Studio
This cloud tool has a UI and requires no installation. At the time of writing, the visual option to create a
job, didn’t have a connector for the Ed-Fi API nor a generic REST connector that could be used and
creating one was out of scope for this effort.

However, a POC was created to showcase it as another cloud tool alternative since it provides the option
to directly create a Jupyter Notebook.

An Ed-Fi ODS/API was set-up in an EC2 instance (t2.medium) and the NCES csv file was placed in a S3
bucket. The job cluster was configured with 10 G 1X workers .

The following commented code was added to a cell of a new Jupyter Notebook:

import requests
import json
import os
from pyspark.sql.functions import *

This function gets called for each row in the dataframe. It’s executed simultaneously by each executor
def postSchool(row):
try:
The actual request done to the Ed-Fi API endpoint. Note we convert the row to a dictionary as the json argument
res = requests.post(BASE_URL + API_ENDPOINT, verify=False, headers=api_call_headers, json= row.asDict())
if res != None and res.status_code == 200:
print(res.text)

except Exception as e:
print("Error: {0}".format(e))

Set up variables
BASE_URL = "<Ed-Fi API URL (e.g: "https://edfi-test/WebApi")>"
AUTH_ENDPOINT = "/oauth/token"
API_ENDPOINT = "/data/v3/ed-fi/schools"
API_KEY = "<vendor Id>"
API_SECRET = "<vendor secret>"
SOURCE_RAW_PATH = os.path.join("s3://", "<bucket name>", "<NCES file name>")
EXTRACT: creates a dataframe from the contents of the CSV
source_df = spark.read.format("csv").option("header", "true").load(SOURCE_RAW_PATH)
TRANSFORM: selects and renames (maps) the SCHID and SCH_NAME columns
df = source_df.select("SCHID","SCH_NAME").toDF("schoolId","nameOfInstitution")
Adds the hardcoded gradeLevels and educationOrganizationCategories columns
df = df.withColumn("gradeLevels", array(struct(lit("uri://ed-fi.org/GradeLevelDescriptor#Early
Education").alias("gradeLevelDescriptor"))))
df = df.withColumn("educationOrganizationCategories",
array(struct(lit("uri://ed-fi.org/EducationOrganizationCategoryDescriptor#School").alias("educationOrganizationCategoryDescript
or"))))
LOAD
data = {"grant_type": "client_credentials"}
retrieves an authorization token used to post the rows
access_token_response = requests.post(BASE_URL + AUTH_ENDPOINT, data=data, verify=False, allow_redirects=False,
auth=(API_KEY, API_SECRET))
extracts the token from the response
tokens = json.loads(access_token_response.text)

Growth towards impact 26
www.crocusllc.com

https://edfi-test/WebApi/data/v3/ed-fi/schools

builds the header for the post
api_call_headers = {"Authorization": "Bearer " + tokens['access_token']}
invokes the post function for each row in the dataframe
df.foreach(postSchool)

Since the Jupyter Notebook is a functionality provided by Databricks the above code can be run in
Azure Databricks and Google Cloud Databricks.

This script loaded the source dataset in 29:27 minutes. Shorter load times can be achieved by scaling up
the Ed-Fi API VM and increasing the number of worker nodes in the databricks cluster.

Note that Apache Spark (underlying Databricks technology) allows using SQL language to manipulate
dataframes.

Growth towards impact 27
www.crocusllc.com

CONCLUSION

All the tools explored in this document are able to concurrently POST data into an Ed-Fi API endpoint
Out-Of-Box with both Talend and Nifi being options for on-prem environments and Azure Data Factory
and AWS Glue Studio for cloud ones.

For local (on premises) testing, we used a development machine with:

● 8 cores (16 threads)
● 16 Gb RAM
● SSD

Running the Ed-Fi ODS/API v5.3 on IIS and SQL Server 2019.

Tool Time (~ 100,000 records) Implementation Time

DIT 32:36 min 2 hrs

Talend 51:16 min 1 hrs

Nifi (1 concurrent thread) 21 min 3 hrs

Nifi (10 concurrent threads) 5 min 3 hrs

Growth towards impact 28
www.crocusllc.com

The freely available download for Talend only allows for operation in single threaded mode. We were
not able to obtain a multi-threaded version in time for this report, but hope to include those results in
the future. We expect a multi-threaded version of Talend to perform comparable to NiFi

For testing tools in the cloud we used an Azure instance for the Ed-Fi API:

Standard_DS11_v2 instance

● 2 virtual CPU’s
● 14GB Ram
● SSD

Tool Time (~ 100,000 records) Implementation Time

Azure Data Factory 51:16 min 2 hrs

AWS Glue Studio (Databricks) 29:26 min < 1 hr

For Azure Data Factory each POST took between 6-7 seconds to get a response from the Ed-Fi API.. This
is probably caused by too few resources being assigned to the API service. With AWS Glue the API
responded much quicker (~20ms) but the CPU was spiked at 100%, again pointing to the need for more
system resources for the API server. We chose this size machine for the API as this was the size of the
instance that the Ed-Fi tools team had used for testing Data Import v1.3 vs the upcoming
multi-threaded Data Import v2.0. In our testing the data import tool could take upwards of seven hours
to load the same data, system resources are key to any ETL tool running well.

As for ease of setting up and implementing an ETL with these tools we consider Talend to be the
easiest, followed by Azure Data Factory and finally by NiFi due to the JOLT transformation used in it.

The DIT is suitable for loading moderate amounts of CSV data where little to no transformations are
required. When more complex transformations are needed or multiple data sources need to be
combined and the amount of data to load is moderate, Talend is a good choice (even the free open
source option). When large amounts of data is to be loaded (despite the transformation or data sources
complexity) NiFi would be the best fit. For Azure cloud implementations, Azure Data Factory can handle
complex transformation scenarios and high data loads.

As a final consideration, for implementers comfortable with python, scala and SQL languages
Databricks is a valid option.

Growth towards impact 29
www.crocusllc.com

2023 UPDATE

The testing we did on the various products in 2022 was a bit hurried and the hardware used was not
consistent between products (i.e. some were completed on development machines rather than
standardized environments) in addition the times were from a single attempt. In early 2023 we revisited
the testing of some of the products with a sounder methodologies. We removed Talend and AWS Glue
and included a new suite of ETL tools: Earthmover and Lightbringer

For these tests, we used the following environments in Azure:

ODS/API - v6.1 running in a Basic (B2) Linux App Service (2 Cores, 3.5 GiB of RAM)

Managed PostgreSQL - Postgres on Azure Database flexible server (Burstable, B2s, 2 vCores, 4 GiB
RAM)

ETL tools except Azure Data Factory - Standard DS11 v2 Virtual Machine (2 vCores, 14 GiB memory)
Windows (2019 datacenter)

Azure Data Factory used a compute size of medium

As a data source we used the same NCES CCD 2020-2021 school directory as the previous test. Each tool
was run 3 times, and then averaged:.

Tool Avg. Time (~ 100,000 records)

Azure Data Factory 26 min, 45 sec

Data Import v2.0 23 min, 48 sec

Earthmover and Lightbringer 25 min, 48 sec

Nifi 23 min, 8 sec

As shown in the table above all 4 tools are now similar in their performance (including the new tool
suite, Earthmover and Lightbringer)

Growth towards impact 30
www.crocusllc.com

